Multiscale change point inference
نویسندگان
چکیده
منابع مشابه
FDR-control in multiscale change-point segmentation
Fast multiple change-point segmentation methods, which additionally provide faithful statistical statements on the number, locations and sizes of the segments, have recently received great attention. In this paper, we propose a multiscale segmentation method, FDRSeg, which controls the false discovery rate (FDR) in the sense that the number of false jumps is bounded linearly by the number of tr...
متن کاملInference in continuous-time change-point models
We consider the problem of Bayesian inference for continuous-time multi-stable stochastic systems which can change both their diffusion and drift parameters at discrete times. We propose exact inference and sampling methodologies for two specific cases where the discontinuous dynamics is given by a Poisson process and a two-state Markovian switch. We test the methodology on simulated data, and ...
متن کاملBayesian Inference on Change Point Problems
Change point problems are referred to detect heterogeneity in temporal or spatial data. They have applications in many areas like DNA sequences, financial time series, signal processing, etc. A large number of techniques have been proposed to tackle the problems. One of the most difficult issues is estimating the number of the change points. As in other examples of model selection, the Bayesian...
متن کاملBaSTA: consistent multiscale multiple change-point detection for ARCH processes
The emergence of the recent financial crisis, during which markets frequently underwent changes in their statistical structure over a short period of time, illustrates the importance of non-stationary modelling in financial time series. Motivated by this observation, we propose a fast, well-performing and theoretically tractable method for detecting multiple change-points in the structure of an...
متن کاملBayesian Hierarchical Nonparametric Inference for Change-point Problems
SUMMARY Bayesian nonparametric inference for a nonsequential change-point problem is studied. We use a mixture of products of Dirichlet processes as our prior distribution. This allows the data before and after the change-point to be dependent, even when the change point is known. A Gibbs sampler algorithm is also proposed in order to overcome analytic diiculties in computing the posterior dist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
سال: 2014
ISSN: 1369-7412
DOI: 10.1111/rssb.12047